【数検2級】数学検定2級2次 問題4 - 質問解決D.B.(データベース)

【数検2級】数学検定2級2次 問題4

問題文全文(内容文):
問題4.(選択)
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、→AB=→b ,→AC=→cとして、次の問いに答えなさい。
(1) →ADを→b,→cを用いて表しなさい。
(2) →AIを→b,→cを用いて表しなさい。
チャプター:

0:00 問題4について
1:14 (1)の解説
3:05 (2)の解説
5:34 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4.(選択)
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、→AB=→b ,→AC=→cとして、次の問いに答えなさい。
(1) →ADを→b,→cを用いて表しなさい。
(2) →AIを→b,→cを用いて表しなさい。
投稿日:2023.02.18

<関連動画>

【数検3級】数学検定3級対策問題6(23)~(26)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell \parallel m$のとき、$∠x$の大きさは何度ですか。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る 

【数検2級】数学検定2級 問題4~問題8

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4. 2次関数$y=x^2+4x+a$の最小値が1となるように、定数aの値を定めなさい。
問題5. $0°\leqq\theta\leqq 180°$とします。$\tan\theta=\dfrac{1}{2}$のとき、$\cos\theta$の値を求めなさい。
問題6. 3個のさいころを同時に振るとき、3個とも異なる目が出る確率を求めなさい。ただし、さいころの目は1から6まであり、どの目も出る確率は等しいものとします。
問題7. 2進法で表された数$1011010_{(2)}$を10進法で表しなさい。
問題8. 次の計算をしなさい。$\dfrac{x+1}{x+2} -\dfrac{x+2}{x+3}$
この動画を見る 

【数検3級】数学検定3級対策問題2~5

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#式の計算(展開、因数分解)#2次方程式#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題2~5の解説動画です。
この動画を見る 

#数検準1級1次#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 3 } \displaystyle \frac{x-3}{\sqrt{ 3x+7 }-4}$

出典:数検準1級1次
この動画を見る 
PAGE TOP