【高校数学】 数Ⅱ-110 点の回転 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-110 点の回転

問題文全文(内容文):
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
投稿日:2015.08.27

<関連動画>

【高校数学】 数Ⅱ-118 三角関数の合成①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を$rsin(\theta+\alpha)$の形に変形しよう。ただし、$r \gt 0 ,-π \lt \alpha \lt π$とする。

①$\sqrt{ 3 } \sin \theta+\cos \theta$

②$\sqrt{ 2 } \sin \theta-\sqrt{ 6 } \cos \theta$

③$3 \sin \theta+4 \cos \theta$
この動画を見る 

【高校数学】 数Ⅱ-88 扇形の弧の長さと面積

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____

◎次の扇形の弧の長さと面積を求めよう。

③半径が4、中心角が$\displaystyle \frac{π}{5}$

④半径が3、中心角が150°
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

数学「大学入試良問集」【8−3 2直線のなす角】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x$を正の実数とする。
座標平面上の3点$A(0,1),B(0,2),P(x,x)$をとり、$\triangle ABC$を考える。
$x$の値が変化するとき、$\angle APB$の最大値を求めよ。
この動画を見る 

数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
この動画を見る 
PAGE TOP