福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線

問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(14)
$y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)$のグラフを描け。凹凸、漸近線も調べよ。
単元: #数Ⅱ#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(14)
$y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)$のグラフを描け。凹凸、漸近線も調べよ。
投稿日:2021.11.07

<関連動画>

e^πとπ^e どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る 

福田の数学〜立教大学2025理学部第3問〜指数関数と円でできる領域の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a,p$は正の実数とする。

座標平面上の曲線$C_1:y=e^x$と$C_1$上の点

$(p,e^p)$がある。

$P$における$C_1$の法線を$\ell,\ell$と$x$軸の

交点を$A(a,0)$、$A$を中心とする半径$r$の円を

$C_2$とする。

$P$が$C_1$と$C_2$のただ一つの共有点であるとき、

次の問いに答えよ。

(1)$\ell$の方程式を$p$を用いて表せ。

(2)$a$を$p$を用いて表せ。

(3)$r$を$p$を用いて表せ。

(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。

(5)$p$を(4)で求めた値とするとき、

次の不等式の表す領域$D$の面積$S$を求めよ。

$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$

$(x-a)^2+y^2\geqq r^2$

$2025$年立教大学理学部過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
この動画を見る 

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 

福田のおもしろ数学458〜関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

整数から整数への関数$f(n)$が

$f(n)=f(n^2+n+1)$

を満たす偶関数であるとき、

$f(n)$を求めて下さい。
   
この動画を見る 
PAGE TOP