モスクワ数学オリンピック 整数 - 質問解決D.B.(データベース)

モスクワ数学オリンピック 整数

問題文全文(内容文):
$n・2^n+1$が3の倍数となる自然数$n$を求めよ.

数学オリンピックモスクワ過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n・2^n+1$が3の倍数となる自然数$n$を求めよ.

数学オリンピックモスクワ過去問
投稿日:2021.12.26

<関連動画>

整数部分 2024灘高校の最初の1問

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {15} + \sqrt{10} $の整数部分は?
灘高等学校2024
この動画を見る 

一橋大学2022整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^a3^b+2^c3^d=2022$を満たす$0$以上の整数$(a,b,c,d)$を求めよ.

2022一橋大過去問
この動画を見る 

息抜き整数問題(でもそんなに簡単じゃないよ)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数である.
$8^{q-1}-1=pq^2$の$(p,q)$を求めよ.
この動画を見る 

整数問題 2通りの解法で

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$ 自然数
$7^{2n-1}+9^{2n-1}+47^{2n-1}$
は63の倍数であることを示せ。
この動画を見る 
PAGE TOP