【数学】中2-27 一次関数って? - 質問解決D.B.(データベース)

【数学】中2-27 一次関数って?

問題文全文(内容文):
y=①__のように、 yがxの②__で表されるとき、『yはXの一次関数である』という。
ちなみに、aには③__と ④__、bには⑤__っていう名前があるんだ!

$\boxed{A} y=2x+3$
$\boxed{B} y=-4-X$
$\boxed{C} y=5x$
$\boxed{D} y=\displaystyle \frac{x}{3}-9$


⑥ $\boxed{A}~\boxed{D}$の中で一次関数はどれ?

◎⑦~⑩について、それぞれyをXの式で表そう!

⑦x円のものを1000円で買ったときの残金y円


⑧一辺xcmの正方形の面積y$cm^2$


⑨8kmの道のりを、時速xkmで歩いたときにかかる時間と
y時間


⑩縦の長さが6cm、横の長さがxcmの長方形の周の長さycm

⑪ ⑦~⑩で一次関数はどれ?
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
y=①__のように、 yがxの②__で表されるとき、『yはXの一次関数である』という。
ちなみに、aには③__と ④__、bには⑤__っていう名前があるんだ!

$\boxed{A} y=2x+3$
$\boxed{B} y=-4-X$
$\boxed{C} y=5x$
$\boxed{D} y=\displaystyle \frac{x}{3}-9$


⑥ $\boxed{A}~\boxed{D}$の中で一次関数はどれ?

◎⑦~⑩について、それぞれyをXの式で表そう!

⑦x円のものを1000円で買ったときの残金y円


⑧一辺xcmの正方形の面積y$cm^2$


⑨8kmの道のりを、時速xkmで歩いたときにかかる時間と
y時間


⑩縦の長さが6cm、横の長さがxcmの長方形の周の長さycm

⑪ ⑦~⑩で一次関数はどれ?
投稿日:2013.07.16

<関連動画>

直角三角形の中の正方形 A 解き方2通り 岡山白陵

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の1辺の長さは?
*図は動画内参照

岡山白陵高等学校
この動画を見る 

【今年も全国で類題が出るよ】図形:栃木県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$は$AB=AC$の二等辺三角形である.
点$D$は辺$BA$の延長であり,$ \angle ACB=\angle ACD$である.
$ \triangle DBC \backsim \triangle DCA$であることを証明しなさい.

栃木県高校過去問
この動画を見る 

【中学数学・数A】中高一貫校問題集2(代数編)267:確率と標本調査:確率の計算:5枚のカードを並べるときに両端や隣り合う場合の確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
教材: #TK数学#TK数学問題集2(代数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,Eの文字が書かれたカードが1枚ずつある。このカードをよく混ぜて1列に並べるとき、次のような場合の確率を求めよう。
(1)Aが右端にくる。
(2)AとEが両端にくる。
(3)BとCが隣り合う。
この動画を見る 

中2数学「高さが等しい三角形の面積比②」

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
~例題~

次の図の$\triangle ABC$で,点$D,E$は辺$AB$上の点で点$F,G$は辺$BC$上の点です.
線分$EF,DF,DG,AG$によって,$\triangle ABC$の面積が5等分されています.

(1)
$BG:GC$を最も簡単な整数の比で表しなさい.

(2)
$BC=15$cmのとき,$BF$の長さを求めなさい.
この動画を見る 

【中学数学】連立方程式の裏技~加減法,代入法以外の解き方~ 2-4【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=-9 \\
-2x+9y=-16
\end{array}
\right.
\end{eqnarray}$


2⃣
$\begin{eqnarray}
\left\{
\begin{array}{l}
-8x-3y=-1 \\
6x-4y=7
\end{array}
\right.
\end{eqnarray}$

この動画を見る 
PAGE TOP