【数学】中2-27 一次関数って? - 質問解決D.B.(データベース)

【数学】中2-27 一次関数って?

問題文全文(内容文):
y=①__のように、 yがxの②__で表されるとき、『yはXの一次関数である』という。
ちなみに、aには③__と ④__、bには⑤__っていう名前があるんだ!

$\boxed{A} y=2x+3$
$\boxed{B} y=-4-X$
$\boxed{C} y=5x$
$\boxed{D} y=\displaystyle \frac{x}{3}-9$


⑥ $\boxed{A}~\boxed{D}$の中で一次関数はどれ?

◎⑦~⑩について、それぞれyをXの式で表そう!

⑦x円のものを1000円で買ったときの残金y円


⑧一辺xcmの正方形の面積y$cm^2$


⑨8kmの道のりを、時速xkmで歩いたときにかかる時間と
y時間


⑩縦の長さが6cm、横の長さがxcmの長方形の周の長さycm

⑪ ⑦~⑩で一次関数はどれ?
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
y=①__のように、 yがxの②__で表されるとき、『yはXの一次関数である』という。
ちなみに、aには③__と ④__、bには⑤__っていう名前があるんだ!

$\boxed{A} y=2x+3$
$\boxed{B} y=-4-X$
$\boxed{C} y=5x$
$\boxed{D} y=\displaystyle \frac{x}{3}-9$


⑥ $\boxed{A}~\boxed{D}$の中で一次関数はどれ?

◎⑦~⑩について、それぞれyをXの式で表そう!

⑦x円のものを1000円で買ったときの残金y円


⑧一辺xcmの正方形の面積y$cm^2$


⑨8kmの道のりを、時速xkmで歩いたときにかかる時間と
y時間


⑩縦の長さが6cm、横の長さがxcmの長方形の周の長さycm

⑪ ⑦~⑩で一次関数はどれ?
投稿日:2013.07.16

<関連動画>

【テスト対策・中2】3章-1

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1次関数$y=-\dfrac{3}{2}x+\dfrac{1}{5}$について、
$x$の増加量が10のときの$y$の増加量を求めなさい。

②1次関数$y=-x-6$で、$x$の変域が$-3\leqq x \leqq 2$のとき、
$y$の変域を求めなさい。

③直線$3x-2y=12$と$x$軸との交点を、
直線$ax-y=-8$が通るとき、$a$の値を求めなさい。
この動画を見る 

補助線引けるかな?

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
a:bを求めよ
*図は動画内参照
この動画を見る 

【高校受験対策】数学-規則性5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ます目が書いてあるボード上で,次の規則にしたがって,円形のコマを進める.

<規則>
①最初に,図1のようにボードの左下のます目にコマをおく.
②さいころを1回振って出た目の数が奇数ならば上方向に,
偶数ならば右方向に出た目の数だけコマを進める.
ただし,コマがます目の端まで進めば,それまでとは反対方向にコマを進める.
③続けて2回目のさいころを振るとき,
コマが1回目に進んだ位置から②の規則にしたがってコマを進め,
コマが2回目に進んだ位置をコマが止まるます目とする.

(1)さいころを2回振って,$5→6$の順に目が出た.
$4\times 4$のます目の中で,コマが止まるます目に○印を記入しなさい.

(2)さいころを2回振って,$4\times 4$のます目のボード上でコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

(3) さいころを2回振って,$5\times 5$のます目(図2)のボード上で,
規則にしたがってコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

図は動画内参照
この動画を見る 

中国4000年ラーメンが伸び続けたら何km?

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
中国4000年間ずっとラーメンが伸び続けたときのラーメンの長さを計算
この動画を見る 

3点が一直線上  明星

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
$3点(0,8),(1,t),(4,1-t)が一直線上にあるとき、定数tの値を求めよ。$
この動画を見る 
PAGE TOP