福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)

問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(4)
$f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x\neq 0)
0    (x=0)
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(4)
$f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x\neq 0)
0    (x=0)
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
投稿日:2021.07.24

<関連動画>

大学入試問題#487「みるからに微分」 電気通信大学(2022) #定積分 #極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 4 } \displaystyle \frac{1}{x-4}\displaystyle \int_{2}^{\sqrt{ x }} log(1+t^2)dt$

出典:2022年電気通信大学 入試問題
この動画を見る 

04愛知県教員採用試験(数学:14番 楕円、接線、相加相乗平均)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{14}$ $a\gt 0,b\gt 0$

楕円$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$
の接線がx軸,y軸と交わる点を$P.Q$とする.
$PQ$の最小値を求めよ.
この動画を見る 

微分方程式⑨【連立微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$

これを解け.
この動画を見る 

11岡山県教員採用試験(数学:1-(6) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$

$y\dfrac{dy}{dx}=y^2+1$
の一般解を求めよ.
この動画を見る 

【数Ⅲ-129】速度と加速度②(平面上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度➁・平面上の点の運動編)

①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
この動画を見る 
PAGE TOP