大学入試問題#765「まったり解いて大丈夫」 千葉大学(2003) 数列 - 質問解決D.B.(データベース)

大学入試問題#765「まったり解いて大丈夫」 千葉大学(2003) 数列

問題文全文(内容文):
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$

(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ

出典:2003年千葉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$

(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ

出典:2003年千葉大学 入試問題
投稿日:2024.03.15

<関連動画>

大阪大学2023年の積分に見えない積分難問にガチで挑んでみた!#shorts #高校数学 #大阪大学

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大阪大学2023年の積分に見えない積分難問にガチで挑んでみた!
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$n$を奇数とする。nと$[\frac{3n+2}{2}]$の積が6の倍数であるための必要十分条件は、
nを$\boxed{\ \ エ\ \ }$で割った時の余りが$\boxed{\ \ オ\ \ }$となるときである。ただし、
実数xに対しxを超えない最大の整数を[x]と表す。
また、$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$は$0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }$
を満たす整数である。$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$を求める過程を解答欄に記述しなさい。

2022慶應義塾大学理工学部過去問
この動画を見る 

群馬大/岐阜大 二次関数/二次方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#岐阜大学#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。

岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値
この動画を見る 

千葉大 埼玉大 整式の剰余 三乗根 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$x^4+ax^3+ax^2+bx-6$が$x^2-2x+1$で割り切れるとき、a,bの値

埼玉大学過去問題
$\frac{1}{2-{}^3\sqrt7}=P+q{}^3\sqrt7+r^3\sqrt{49}$が成り立つ整数p,q,rの例をあげよ。
${}^3\sqrt7$と${}^3\sqrt9$ではどちらが2に近いか。
この動画を見る 

福田の数学〜神戸大学2023年文系第3問〜2つの円の位置関係と共通弦

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを正の実数とする。2つの円
$C_1$:$x^2$+$y^2$=$a$, $C_2$:$x^2$+$y^2$-$6x$-$4y$+3=0
が異なる2点A, Bで交わっているとする。直線ABが$x$軸および$y$軸と交わる点をそれぞれ($p$, 0), (0, $q$)とするとき、以下の問いに答えよ。
(1)$a$のとりうる値の範囲を求めよ。
(2)$p$, $q$の値を$a$を用いて表せ。
(3)$p$, $q$の値が共に整数となるような$a$の値をすべて求めよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP