福田の1.5倍速演習〜合格する重要問題015〜東京大学2016年度理系数学第4問〜複素数平面上の三角形が鋭角三角形になる条件 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題015〜東京大学2016年度理系数学第4問〜複素数平面上の三角形が鋭角三角形になる条件

問題文全文(内容文):
zを複素数とする。複素数平面上の3点$A(I),B(z),C(z^2)$が
鋭角三角形をなすようなzの範囲を定め、図示せよ。

2016東京大学理系過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
zを複素数とする。複素数平面上の3点$A(I),B(z),C(z^2)$が
鋭角三角形をなすようなzの範囲を定め、図示せよ。

2016東京大学理系過去問
投稿日:2022.11.30

<関連動画>

cos72°を求めよ(誘導あり)慶應(経済)Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$

慶應(経済)過去問
この動画を見る 

【高校数学】数Ⅲ-2 複素数平面・共役な複素数②

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
この動画を見る 

2023藤田医科大 1の7乗根の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
この動画を見る 

Euler's formula 中学生の知識でオイラーの公式を理解しよう 最終回

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学の地域でオイラーの公式を解説していきます.
この動画を見る 

13東京都教員採用試験(数学:6番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
6⃣$argZ=\frac{4}{3} \pi$ , $arg(1-z)=\frac{\pi}{4}$
$arg \frac{z}{(1-z)^2}$ , |z|を求めよ。
この動画を見る 
PAGE TOP