問題文全文(内容文):
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
投稿日:2021.04.11