【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える - 質問解決D.B.(データベース)

【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える

問題文全文(内容文):
複素数平面の基本⑫半直線のなす角を考えていきます.
チャプター:

0:00 オープニング
0:04 解説開始
4:17 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本⑫半直線のなす角を考えていきます.
投稿日:2023.03.04

<関連動画>

福田のおもしろ数学263〜複素数平面上の3点が正三角形をなす必要十分条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
この動画を見る 

順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
この動画を見る 

ハルハル様の作成問題③ #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(1)〜ド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
$(1)\ (1+i)^{10}$を展開して得られる複素数は$\boxed{\ \ ア\ \ }$である。ただし、iは虚数単位とする。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP