東北大学 三次方程式 解と係数の関係 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東北大学 三次方程式 解と係数の関係 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2013東北大学過去問題
$f(x)=x^3-kx^2-1$
f(x)=0の3解をα,β,γとする。
g(x)は$x^3$の係数が1である3次式で、g(x)=0の3解は、αβ,βγ,γαである。
(1)g(x)をkを用いて表せ。
(2)f(x)=0,とg(x)=0が共通解をもつkの値。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013東北大学過去問題
$f(x)=x^3-kx^2-1$
f(x)=0の3解をα,β,γとする。
g(x)は$x^3$の係数が1である3次式で、g(x)=0の3解は、αβ,βγ,γαである。
(1)g(x)をkを用いて表せ。
(2)f(x)=0,とg(x)=0が共通解をもつkの値。
投稿日:2018.05.01

<関連動画>

福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
この動画を見る 

福田の数学〜千葉大学2024年文系第1問〜三角形の成立条件と対数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#指数関数と対数関数#対数関数#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 3辺の長さが$2,5,a$である三角形が存在するような、$a$の値の範囲を求めよ。
(2) 3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$である三角形が存在するような、$x$の値の範囲を求めよ。
(3) ある二等辺三角形の3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$であるとき、$x$の値を求めよ。
この動画を見る 

【高校数学】数Ⅲ-19 複素数と三角形②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点$P(2+i),Q(3+2i),R(x+3i)$について,
次の条件を満たすような実数$x$の値を求めよ.

①3点$P,Q,R$が一直線上にある.

②2直線$PQ,PR$が垂直に交わる.
この動画を見る 

【数Ⅱ】微分法と積分法:立体図形の見方・捉え方を千葉大の過去問の類題を例に説明します!!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #7つの大解法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、$OA=OB=OC=1、∠BAC=90°$のとき、この四面体の体積Vの最大値を求めよ。
この動画を見る 

福田の数学〜神戸大学2025理系第5問〜連続と微分可能と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、

$x \gt 0$で微分可能であり、その導関数$f'(x)$は

連続であるとする。

$t \geqq 1$を満たす$t$に対して、

$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを

$h(t)$とし、$t=1$のときは$h(1)=0$とする。

以下の問いに答えよ。

(1)$t\gt 1$とする。

開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、

閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。

(2)$t\geqq 1$を満たす任意の$t$に対して、

$g(t)=h(t)+2$が成り立つとする。

このとき、$f(1)$の値を求めよ。

また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。

$2025$年神戸大学理系過去問題
この動画を見る 
PAGE TOP