福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率

問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.17

<関連動画>

【高校数学】組合わせ~順列との違いを明確に~ 1-10【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせ 順列との違いについての説明した動画です
この動画を見る 

【40分で総整理】基礎の基礎から『場合の数』(数学A)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
$A,B,C,D,E$の5人から3人を選んで並べるとき、その総数は?

2⃣
男子5人、女子3人の合計8人が1列に並ぶとき、次の並び方は何通りあるか。
(1)男子が両端に来る
(2)女子3人が隣り合う

3⃣
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$までアルファベット順で並べるとき、$cbdea$は何番目か。

4⃣
5人を円形に並べたとき、その総数は何通り?

5⃣
1から5までの自然数を使ってできる3桁の整数は何通りあるか?
ただし同じ数字を繰り返し使ってもよい。

6⃣
$A,B,C,D,E$の5人から3人を選んで組をつくるとき、その総数は?

7⃣
生徒9人を3人ずつ、3つのグループ$A,B,C$に分ける分け方は何通りか。

8⃣
$a,a,a,b,b$の5文字を1列に並べる順列は何通りあるか。
この動画を見る 

数学「大学入試良問集」【5−7 条件付き確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
甲、乙2人でそれぞれ勝つ確率が下の表で示されるゲームを続けて行う。
甲乙のどちらか一方が続けて2度ゲームに勝った時は試合を終了し、2度続けて勝ったものが勝者となる。
$\begin{array}{c|c|c|c|c|c}
& 第1回目のゲーム & 甲が勝ったゲーム & 乙が勝ったゲーム \\
\hline
甲の勝つ確率 & \displaystyle \frac{2}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{1}{5} \\
\hline
乙の勝つゲーム & \displaystyle \frac{1}{3} & \displaystyle \frac{1}{3} & \displaystyle \frac{4}{5}
\end{array}$

(1)
3回以内のゲームで試合が終了する確率を求めよ。

(2)
4回のゲームで試合が終了することが分かっている。
このとき、甲が勝者となっている確率を求めよ。
この動画を見る 

【数A】中高一貫校問題集3(論理・確率編)86:場合の数と確率:重複順列:9人を2つのグループに分ける。考え方は格付けチェック!?

単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
9人を次のように分ける方法は通りあるか。
(1)2つのグループA、Bに分ける。ただし、各グループには少なくとも1人は入るものとする。
(2)2つのグループに分ける。
この動画を見る 

福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。 
この動画を見る 
PAGE TOP