福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率

問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.17

<関連動画>

福田の数学〜北海道大学2024年理系第2問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面と呼ぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を$n$回行ったとき、持ち点が2以下である確率を求めよ。ただし、$n$は2以上の自然数とする。
(2)この試行を4回行って持ち点が10以上であった時に、さらにこの試行を2回行って持ち点が17以上である条件付き確率を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。 
この動画を見る 

福田のわかった数学〜高校1年生065〜場合の数(4)0を含む順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(4) 0を含む順列
$0,1,2,3,4,5,6$から異なる4個を選んで
4桁の整数を作るとき、次の個数を求めよ。
(1)全部で  (2)偶数  (3)奇数  (4)9の倍数  (5)4の倍数
この動画を見る 

福田のおもしろ数学479〜ちょうど9回でゲームが終了する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

コインを投げて表が出れば$1$点獲得し、裏が出たら

$2$点を失う。

コインを繰り返し投げて、持ち点が$1$点以下になれば

終了するゲームをする。

最初$10$点をもち、ゲームを始めて$9$回目にゲームが

終了する確率を求めて下さい。
    
この動画を見る 

早稲田大学 赤n-7個、白7個、5個取り出して赤3白2の確率 Pnを最大にするnを求める Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
袋の中に赤玉n-7個、白玉7個の合計n個の玉が入っている。
ただし,$n \geqq 10$とする。この袋から一度に5個の玉を取り出したとき、
赤玉が3個、白玉が2個取り出される確率を$P_n$とする。$P_n$が最大となるnの値を求めよ。
この動画を見る 
PAGE TOP