問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は\hspace{30pt}\\
\boxed{\ \ ア\ \ }\ であり、最小値がちょうど2となる確率は\ \boxed{\ \ イ\ \ }\ である。また、\hspace{40pt}\\
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は\\
\boxed{\ \ ウ\ \ }\ である。\hspace{260pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は\hspace{30pt}\\
\boxed{\ \ ア\ \ }\ であり、最小値がちょうど2となる確率は\ \boxed{\ \ イ\ \ }\ である。また、\hspace{40pt}\\
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は\\
\boxed{\ \ ウ\ \ }\ である。\hspace{260pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は\hspace{30pt}\\
\boxed{\ \ ア\ \ }\ であり、最小値がちょうど2となる確率は\ \boxed{\ \ イ\ \ }\ である。また、\hspace{40pt}\\
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は\\
\boxed{\ \ ウ\ \ }\ である。\hspace{260pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は\hspace{30pt}\\
\boxed{\ \ ア\ \ }\ であり、最小値がちょうど2となる確率は\ \boxed{\ \ イ\ \ }\ である。また、\hspace{40pt}\\
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は\\
\boxed{\ \ ウ\ \ }\ である。\hspace{260pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.17