さくっと解こう - 質問解決D.B.(データベース)

さくっと解こう

問題文全文(内容文):
x,y,zは相異なる実数である.
$x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}$のとき,
$x^2y^2z^2$の値を求めよ.
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,y,zは相異なる実数である.
$x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}$のとき,
$x^2y^2z^2$の値を求めよ.
投稿日:2022.06.14

<関連動画>

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

福田の数学〜京都大学2023年文系第1問〜3乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大学文系過去問
この動画を見る 

福田の数学〜九州大学2022年文系第4問〜定義に従って定積分の性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
$f(x)$を整式とする。$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$#\int_a^bf(x)dx=F(b)-F(a)\ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、f(x),g(x),h(x)は整式、k,lは定数である。
以下、$f(x)$が区間$0 \leqq x \leqq 1$上で増加関数になる場合を考える。
$n$を自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、$n$を限りなく大きくすると$S_n$は$\int_0^1f(x)dx$に限りなく近づく。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことと定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学文系過去問
この動画を見る 

【わかりやすく】等式の証明(数学Ⅱ/等式の証明)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等式を証明せよ。
(1)$4ab=(a+b)^2-(a-b)^2$
(2)$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2$
この動画を見る 

17京都府教員採用試験(数学:共通4番 組合せ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
この動画を見る 
PAGE TOP