さくっと解こう - 質問解決D.B.(データベース)

さくっと解こう

問題文全文(内容文):
x,y,zは相異なる実数である.
x+1y=y+1z=z+1xのとき,
x2y2z2の値を求めよ.
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,y,zは相異なる実数である.
x+1y=y+1z=z+1xのとき,
x2y2z2の値を求めよ.
投稿日:2022.06.14

<関連動画>

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
x2014x4+x3+x2+x+1で割った余りを求めよ

出典:2014年山梨大学 入試問題
この動画を見る 

#自治医科大学2024#式変形_21#元高校教員

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
x13+x13のとき
x+x12の値を求めよ。

出典:自治医科大学 式変形問題
この動画を見る 

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 実数a=512に対して、整式f(x)=x2-ax+1を考える。
(1)整式x4+x3+x2+x+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものをαとする。αを極形式で表せ。ただし、r5=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数αに対して、α2023+α2023の値を求めよ。

2023東北大学理系過去問
この動画を見る 

練習問題52 慶応大学(2021) 最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0<x, 0<y:実数
0x2+16y2=144をみたすときxyの最大値を求めよ。

出典:2021年慶應義塾大学
この動画を見る 

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a+b=1,a2+b2=3のとき、a7+b7の値を求めよ。

2017昭和大過去問
この動画を見る 
PAGE TOP preload imagepreload image