【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕

問題文全文(内容文):
$|\vec{ a }|=1,|\vec{ b }|=3,|\vec{ a }-\vec{ b }|=\sqrt{ 13 }$のとき、$\vec{ a }$と$\vec{ b }$のなす角$\theta$は?
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
$|\vec{ a }|=1,|\vec{ b }|=3,|\vec{ a }-\vec{ b }|=\sqrt{ 13 }$のとき、$\vec{ a }$と$\vec{ b }$のなす角$\theta$は?
投稿日:2024.05.21

<関連動画>

【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る 

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る 

【数C】【ベクトルの内積】a| =|b| = 2, a - b = -2のとき、 a+bとa+tbが垂直になるように、 実数tの値を定めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=|\vec{b}|=2, \vec{a}\cdot\vec{b}=-2$のとき,
$\vec{a}+\vec{b}$と$\vec{a}+t\vec{b}$が垂直になるように,
実数tの値を定めよ。
この動画を見る 

【数C】平行四辺形状のマス目上にあるベクトルを表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトルvec(p),vec(q)をvec(a),vec(b)で表せ。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。

(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。

$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$  ①$(k-kt)$  ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$  ⑤$(k-kt-1)$

以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。

(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。

平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。

$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる

(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。

太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。

直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。

2021共通テスト数学過去問
この動画を見る 
PAGE TOP