大阪市立 整数問題 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪市立 整数問題 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$

出典:大阪市立大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$

出典:大阪市立大学 過去問
投稿日:2019.01.09

<関連動画>

整数問題 華麗な論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021m+1=7^n$を満たす自然数$m,n$が存在することを示せ.
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形

アイキャッチ画像
単元: #数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)複素数$z$と正の実数rは、等式
$z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)$
を満たしている。ただし、$i$は虚数単位である。
$(\textrm{i})z$の偏角$\thetaを0 \leqq \theta \lt 2\pi$の範囲にとるとき、$\theta$のとりうる値の
うち最小のものは$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi$であり、最大のものは$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi$である。
$(\textrm{ii})$等式(*)と等式

$|z-i|=1$
が共に成り立つとき、$r$の値は$r=\boxed{\ \ ナ\ \ }$または$r=\boxed{\ \ ニ\ \ }$である。

2021明治大学理工学部過去問
この動画を見る 

【重要】三角形の外心!特徴をまとめてみた #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の外心の特徴について解説していきます。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
この動画を見る 

【いかに論理的に説明するか…!】整数:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#整数の性質#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$n$を8で割ったときの余り$r$について$n=7r$が成り立つ.
$n$の値を求めなさい.

法政大高校過去問
この動画を見る 
PAGE TOP