福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
投稿日:2024.06.27

<関連動画>

福田のおもしろ数学386〜ルートの付いた不定方程式の解

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 福田次郎
問題文全文(内容文):
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
この動画を見る 

【高校数学】  数A-20  確率② ・ さいころ編Part.2

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
この動画を見る 

福田の数学〜大阪大学2024年理系第5問〜互いに素な整数の個数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
この動画を見る 

5つの文字を求めよ!?東大の整数問題【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
この動画を見る 

【数A】不定方程式の答えがあわないことありませんか?

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不定方程式の答えあわせをしたとき、出した答えと解答が違うときがあるとおもいます。
その場合の確認方法についての解説です!

3x-7y=1を満たす整数解x,yを求めよ
この動画を見る 
PAGE TOP