約束記号 C 慶應義塾 2021 - 質問解決D.B.(データベース)

約束記号  C 慶應義塾 2021

問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$

2021慶應義塾高等学校
単元: #数学(中学生)#数Ⅱ#三角関数#加法定理とその応用#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$

2021慶應義塾高等学校
投稿日:2021.02.23

<関連動画>

福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)三角形ABCにおいて、\angle B=2\alpha, \angle C=2\betaとする。\\
\\
\tan\alpha\tan\beta=x, \frac{AB+AC}{BC}=y\\
\\
とするとき、yをxで表すと、y=\boxed{\ \ ア\ \ }となる。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

【解答にミスあり概要欄】大学入試問題#322 慶應義塾大学(2021) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$-\displaystyle \frac{\pi}{2} \leqq \theta \leqq \displaystyle \frac{\pi}{2}$
$4\cos\displaystyle \frac{\theta}{2}(\cos\displaystyle \frac{\theta}{2}+\sin\displaystyle \frac{\theta}{2})$のとき
$\sin\theta$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(11) 最大最小(1)
$y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})$
(1)右辺を$\cos$で合成せよ。
(2)yの最大値、最小値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP