【数Ⅰ】2次関数:2変数関数の最大最小 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:2変数関数の最大最小

問題文全文(内容文):
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説(1):条件式から求める
1:07 問題解説(2)
3:45 問題解説(3)
4:36 名言

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
投稿日:2021.08.27

<関連動画>

17大阪府教員採用試験(数学:因数分解・整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)$x^2-6y^2+xy+5x+5y+6$を因数分解せよ。
(2)$x^2-6y^2+xy+5x+5y+9=0$をみたす整数の組(x,y)を求めよ。
この動画を見る 

関数と図形 東工大附属(改) B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
面積6等分
Cの座標は?
*図は動画内参照

2021東京工業大学附属科学技術高等学校
この動画を見る 

福田の一夜漬け数学〜ルート計算のコツ(2)値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$

$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$


$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$

(2)$x^2+\frac{1}{x^2}$

(3)$x^3+\frac{1}{x^3}$

(4)$x^4+\frac{1}{x^4}$

(5)$x^5+\frac{1}{x^5}$


$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
この動画を見る 

【高校数学】三角比4.5~例題・三角比といえばこれ・基礎~ 3-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0°≦$\theta$≦180°のとき、sin$\theta$=$\frac{ \sqrt{3} }{ 2 }$を満たす$\theta$を求めよ。

(2) 0°≦$\theta$≦180°のとき、cos$\theta$=-$\frac{ 1 }{ \sqrt{2} }$を満たす$\theta$を求めよ。

(3) 0°≦$\theta$≦180°のとき、tan$\theta$=-$\sqrt{3}$を満たす$\theta$を求めよ。

(4) 0°≦$\theta$≦180°のとする。sin$\theta$=$\displaystyle \frac{3}{5}$のとき、cos$\theta$とtan$\theta$の値を求めよ。

(5) 直線y=$\sqrt{3}$xとx軸の正の向きとのなす角$\theta$を求めよ。
この動画を見る 

福田のおもしろ数学333〜整数部分と小数部分の積に関する方程式の解

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$次の方程式を満たすxを求めよ。[ x ]はxの整数部分、( x )はxの小数部分を表す。$$
$$[ x ]\cdot( x )=2024x$$
この動画を見る 
PAGE TOP