【理数個別の過去問解説】2018年度一橋大学 数学 第5問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2018年度一橋大学 数学 第5問解説

問題文全文(内容文):
一橋大学2018年第5問
aを実数とし, $f(x)=x-x³,g(x)=a(x-x²)$とする。2つの曲線$y=f(x),y=g(x)$は$0<x<1$の範囲に共有点をもつ。
(1)aのとりうる値の範囲を求めよ。
(2)y=f(x)とy=g(x)で囲まれた2つの部分の面積が等しくなるようなaの値を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説(1)
(1:10-1:20 3次関数のグラフの特徴)
3:27 問題解説(2)
6:03 名言

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一橋大学2018年第5問
aを実数とし, $f(x)=x-x³,g(x)=a(x-x²)$とする。2つの曲線$y=f(x),y=g(x)$は$0<x<1$の範囲に共有点をもつ。
(1)aのとりうる値の範囲を求めよ。
(2)y=f(x)とy=g(x)で囲まれた2つの部分の面積が等しくなるようなaの値を求めよ。
投稿日:2020.08.27

<関連動画>

名古屋大 微分・積分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$y=x^2(x+1)とy=k^2(x+1)$とで囲まれる面積が最小となるkの値を求めよ。
$(0 \leqq k \leqq 1)$
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

17兵庫県教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#その他#不定積分・定積分#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣
$l_1:y=kx+2k$ $(k \in \mathbb{ R })$
$l_2:y=x^3-3x+2$
(1)$l_2$の極値
(2)k=0,$l_1$と$l_2$で囲まれた面積
(3)$l_1$と$l_2$が3点で交わるkの範囲
(4)$l_1$が$l_2$の変曲点を通るとき$l_1$と$l_2$で囲まれた面積
この動画を見る 

埼玉大 直方体の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三辺の和が9cmで表面積が$48m^2$の直方体の体積の最大値を求めよ.

長崎大過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
この動画を見る 
PAGE TOP