福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 連立方程式\\
\left\{
\begin{array}{1}
0 \leqq y \leqq 6  \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
\\
の表す領域をDとする。\\
(1)領域Dを図示せよ。\\
(2)点(x,\ y)が領域Dを動くとき、3x+2yの最大値と最小値を求めよ。\\
(3)点(x,\ y)が領域Dを動くとき、x^2-6x+2yの最大値と最小値を求めよ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 連立方程式\\
\left\{
\begin{array}{1}
0 \leqq y \leqq 6  \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
\\
の表す領域をDとする。\\
(1)領域Dを図示せよ。\\
(2)点(x,\ y)が領域Dを動くとき、3x+2yの最大値と最小値を求めよ。\\
(3)点(x,\ y)が領域Dを動くとき、x^2-6x+2yの最大値と最小値を求めよ。
\end{eqnarray}
投稿日:2021.09.12

<関連動画>

3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
この動画を見る 

福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。
この動画を見る 

広島大 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$f(x)=x^2+ax+b$
$\int_0^1 xf(x) dx = \int_0^1 x^2f(x) dx$を満たす
(1)$\int_0^1 f(x) dx$の値
(2)方程式f(x)=0は相異2実根をもち、そのうち少なくとも1つは0と1の間にあることを示せ
この動画を見る 

積分で面積が出る理由

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
この動画を見る 

【数Ⅱ】微分法と積分法:共通接線

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2曲線C₁:y=(x-1/2)²- 1/2,C₂:y=(x- 5/2)²-5/2 の
両方に接する直線を ℓとするとき、直線 ℓの方程式を答えよ。
この動画を見る 
PAGE TOP