大学入試問題#195 兵庫医科大学 定積分 - 質問解決D.B.(データベース)

大学入試問題#195 兵庫医科大学 定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{0}\displaystyle \frac{x^5}{(x^3-1)}\ dx$を計算せよ。

出典:兵庫医科大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0}\displaystyle \frac{x^5}{(x^3-1)}\ dx$を計算せよ。

出典:兵庫医科大学 入試問題
投稿日:2022.05.11

<関連動画>

【誘導有:概要欄】大学入試問題#238 首都大学東京(2012) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。

(2)
関数$f(x)$の最大値を求めよ。

出典:2012年首都大学東京 入試問題
この動画を見る 

大学入試問題#149 岩手大学(2019) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3}\displaystyle \frac{x}{(4-x)^3}\ dx$を計算せよ。

出典:2019年岩手大学 入試問題
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part1〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

福田のおもしろ数学187〜直円錐を平面で切った切り口の面積

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
底辺の半径1、高さ1の直円錐を図のような平面で切ったとき断面積はいくら?
この動画を見る 

#15 数検1級1次 過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る 
PAGE TOP