問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。
(a) 点Pはx軸上にある。
(b) 点Qはyz平面上にある。
(c) 線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。
京都大過去問
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。
(a) 点Pはx軸上にある。
(b) 点Qはyz平面上にある。
(c) 線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。
京都大過去問
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。
(a) 点Pはx軸上にある。
(b) 点Qはyz平面上にある。
(c) 線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。
京都大過去問
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。
(a) 点Pはx軸上にある。
(b) 点Qはyz平面上にある。
(c) 線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。
京都大過去問
投稿日:2023.04.05