2023年京大の解説!回転体の体積の難問です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年京大の解説!回転体の体積の難問です【京都大学】【数学 入試問題】

問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。

(a) 点Pはx軸上にある。

(b) 点Qはyz平面上にある。

(c) 線分OPと線分OQの長さの和は1である。

点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。

京都大過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。

(a) 点Pはx軸上にある。

(b) 点Qはyz平面上にある。

(c) 線分OPと線分OQの長さの和は1である。

点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。

京都大過去問
投稿日:2023.04.05

<関連動画>

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線C:y=cos3x (0xπ2),x軸およびy軸で囲まれる図形の面s系をS
とする。0<t<π2とし、C上の点Q(t,cos3t)と原点O,およびP(t,o),R(0,cos3t)
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)f(t)は最大値をただ一つのtでとることを示せ。そのときのtをαとすると、
f(α)=cos4α3sinα であることを示せ。
(3)f(α)S<916 を示せ。

2022京都大学理系過去問
この動画を見る 

大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
e2x1+exdx

出典:2009年関西大学 入試問題
この動画を見る 

大学入試問題#210 宮崎大学(2018) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
x3x24 dxを計算せよ。

出典:2018年宮崎大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
3 実数xに対して関数f(x)をf(x)=ex2で定め、正の実数xに対して関数g(x)をg(x)=logx+2で定める。またy=f(x), y=g(x)のグラフをそれぞれC1,C2とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xとC1が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xとC1との2つの交点のx座標をα, βとする。ただしαβとする。
直線y=xとC1,C2をすべて同じxy平面上に図示せよ。
(4)C1C2で囲まれる図形の面積を(3)のαβの多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 

【高校数学】毎日積分27日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1ex(logx)2dx
これを解け.
この動画を見る 
PAGE TOP preload imagepreload image