2023年京大の解説!回転体の体積の難問です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年京大の解説!回転体の体積の難問です【京都大学】【数学 入試問題】

問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。

(a) 点Pはx軸上にある。

(b) 点Qはyz平面上にある。

(c) 線分OPと線分OQの長さの和は1である。

点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。

京都大過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
○を原点とするxyz空間において、点Pと点Qは次の3つの条件(a), (b), (c)を満たしている。

(a) 点Pはx軸上にある。

(b) 点Qはyz平面上にある。

(c) 線分OPと線分OQの長さの和は1である。

点Pと点Qが条件(a), (b), (c)を満たしながらくまなく動くとき、線分PQが通過してできる立体 の体積を求めよ。

京都大過去問
投稿日:2023.04.05

<関連動画>

福田の1.5倍速演習〜合格する重要問題042〜明治大学2019年度理工学部第1問(3)〜定積分で表された関数

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)関数f(x)が等式
$f(x)=\pi x\sin x+\frac{2\pi}{\displaystyle\int_0^{\frac{\pi}{2}}f(t)dt}$
を満たすとき、
$f(x)=\pi x\sin x-\boxed{ス}+\sqrt{\boxed{セ}}$
または
$f(x)=\pi x\sin x-\boxed{ス}-\sqrt{\boxed{セ}}$
である。

2019明治大学理工学部過去問
この動画を見る 

#高専数学#不定積分_12#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int fan^{-1}x$ $dx$
この動画を見る 

#千葉大学2021#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int x log(x^2-1) dx$

出典:2021年千葉大学
この動画を見る 

ハルハルさんの積分問題(準備) 難易度高めの最後まで気が抜けない!!

アイキャッチ画像
単元: #三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
この動画を見る 

【数Ⅲ-167】積分と面積③(三角関数編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)

Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。

①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
この動画を見る 
PAGE TOP