問題文全文(内容文):
(1)
次の定積分の値を求めよ。
(ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
(ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$
(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
(1)
次の定積分の値を求めよ。
(ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
(ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$
(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
(ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
(ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$
(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
(1)
次の定積分の値を求めよ。
(ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
(ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$
(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
投稿日:2021.08.13