数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
投稿日:2021.08.13

<関連動画>

【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る 

#名古屋工業大学2020#定積分_15#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(x^2+1)^4 dx$

出典:2020年名古屋工業大学
この動画を見る 

大学入試問題#329 熊本大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{\sin\displaystyle \frac{\theta}{2}}{1+\sin\displaystyle \frac{\theta}{2}}d\theta$

出典:2013年熊本大学 入試問題
この動画を見る 

大学入試問題#391「正面突破が王道だと思いますが、あえて」 東北学院大学(2009) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} (\sin^3x-\cos^3x) dx$

出典:2009年東北学院大学 入試問題
この動画を見る 

大学入試問題#442「難しくはないが、技をかけないと大変かも」 香川大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^5x\ \cos\ x)e^{2\sin\ x}\ dx$

出典:香川大学 入試問題
この動画を見る 
PAGE TOP