【図でイメージする!】2次関数の最大値と最小値の問題はこう解く!【高校数学 数学】 - 質問解決D.B.(データベース)

【図でイメージする!】2次関数の最大値と最小値の問題はこう解く!【高校数学 数学】

問題文全文(内容文):
2次関数の値の範囲と最大値・最小値
①$y=x^2-2x+1$を定義域(0 \leqq x \leqq 3)でグラフをかけ

②$y=2x^2-4x+1$について$-1 \leq z \leq 2$の範囲での最大値と最小値を求めよ

③$y=-3x^2-4x-1$について$1 \leq z \leq 3$の範囲での最大値と最小値を求めよ
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
2次関数の値の範囲と最大値・最小値
①$y=x^2-2x+1$を定義域(0 \leqq x \leqq 3)でグラフをかけ

②$y=2x^2-4x+1$について$-1 \leq z \leq 2$の範囲での最大値と最小値を求めよ

③$y=-3x^2-4x-1$について$1 \leq z \leq 3$の範囲での最大値と最小値を求めよ
投稿日:2021.05.20

<関連動画>

□=❓

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {▢ \frac{2}{3}} = ▢\sqrt {\frac{2}{3}}$
▢=?
*▢は同じ自然数
この動画を見る 

【2次不等式は図で解く!】2次不等式を2次関数でイメージする方法を解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
(1)$x^2+3x-4 \lt 0$
(2)$-x^2-2x+4 \geqq 0$
この動画を見る 

福田の数学〜千葉大学2023年第3問〜2次関数と定積分で表された関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る 

【高校数学】数Ⅰ-25 集合②

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。

①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP