【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/3)^n cosnπ - 質問解決D.B.(データベース)

【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/3)^n cosnπ

問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{3}\right)^n \cos n\pi$
チャプター:

0:00 オープニング
0:05 問題文
0:12 問題解説
1:10 名言

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{3}\right)^n \cos n\pi$
投稿日:2021.01.12

<関連動画>

福田のわかった数学〜高校3年生理系003〜極限(3)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る 

円周率πが無理数であることの証明(数III)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定理(1947,IvanNiren)
πは無理数である

補題1 
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
この動画を見る 

極限ってこういうこと?

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1=0.99999...
数学が得意な方へ証明動画です
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第2問〜分数関数の接線とベクトル計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

座標平面上の点$P(1,1)$と点$Q(1,-1)$および

曲線$C:y=\dfrac{1}{x-4}(x\gt 4)$を考える。

(1)曲線$C$の接線で点$Q$を通るものは存在しないことを

証明しなさい。

(2)曲線$C$の接線で点$P$を通るものを$l$とし、

$C$と$l$の接点を$A$とする。

このとき、$l$の方程式は$y=\boxed{キ}$であり、

点$A$の座標は$\boxed{ク}$である。

また、曲線$C$上の点の点$B$が

$\overrightarrow{PB}・\overrightarrow{PA}+\overrightarrow{PA}・\overrightarrow{AQ}+\overrightarrow{AB}・\overrightarrow{AQ}=-\dfrac{2}{3}$

を満たすとき、点$B$の座標は$\boxed{ケ}$である。

(3)$A,B$を(2)で定めた点とする。

正の数$t$に対し、曲線$C$上の点$R\left(t+4,\dfrac{1}{t}\right)$は

点$A$と異なるものとする。

線分$AR$を$2:1$に内分する点を$S$とし、

線分$BS$を$3:2$に内分する点を$T(u,v)$とするとき、

$u$を$t$の式で表すと$u=\boxed{コ}$である。

また、$uv$の値は$t-\boxed{サ}$のとき最小となる。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

大学入試問題#505「綺麗な数列の問題」 #神戸大学 (2022) #数列 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2022年神戸大学 入試問題
この動画を見る 
PAGE TOP