【高校数学】数Ⅲ-58 逆関数① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-58 逆関数①

問題文全文(内容文):
関数$y=f(x)$の$x$と$y$を入れかえて得られる関数$y=g(x)$を$y=f(x)$の逆関数といい、
$y=①$で表す。
一般に、関数と逆関数では、定義域と②が入れかわり、
そのグラフは$y=③$に関して対称である。

次の関数の逆関数を求め、その定義域と値域を求めよ。

④$y = - 2x + 6\quad (- 1 \leqq x \leqq 4)$

⑤$y = - \sqrt{2 - x}$
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数$y=f(x)$の$x$と$y$を入れかえて得られる関数$y=g(x)$を$y=f(x)$の逆関数といい、
$y=①$で表す。
一般に、関数と逆関数では、定義域と②が入れかわり、
そのグラフは$y=③$に関して対称である。

次の関数の逆関数を求め、その定義域と値域を求めよ。

④$y = - 2x + 6\quad (- 1 \leqq x \leqq 4)$

⑤$y = - \sqrt{2 - x}$
投稿日:2017.08.24

<関連動画>

関西医科大 分数不等式 整数問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西医科大学過去問題
$f(x)=\frac{6x^2+17x+10}{3x-2}$
①$f(x)>0$をみたすxの範囲
②f(n)が正の整数となる整数n
この動画を見る 

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る 

大学入試問題#455「落とすと落ちる問題② 横浜国立大学 後期 (2003) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{16} \displaystyle \frac{dx}{\sqrt{ x }+\sqrt[ 4 ]{ x }}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
この動画を見る 

大学入試問題#378「どこまで記述すべきか・・・」 #奈良県立医科大学2015 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x-\sin(\tan\ x)}{x-\tan\ x}$

出典:2015年奈良県立医科大学 入試問題
この動画を見る 
PAGE TOP