福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積

問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
投稿日:2023.04.14

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第2問〜対称式もどきの表す点の動く領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとするxy平面上に点A(1,-1)があり、点Bは$\overrightarrow{AB}$=(2$\cos\theta$, 2$\sin\theta$)(0≦θ≦2π)を満たす点である。Bの軌跡を境界線とする2つの領域のうち、点Aを含む領域を領域Cとする。ただし、領域Cは境界線を含む。
(1)点Bの軌跡の方程式は$\boxed{\ \ ナ\ \ }$である。
(2)点(x,y)がxy平面上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く範囲は式$\boxed{\ \ ニ\ \ }$で表される領域である。
(3)点(x,y)が領域C上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く領域を領域Dとする。
(i)領域Dを図示しなさい。ただし領域は斜線で示し、境界線となる式も図に記入すること。
(ii)領域Dの面積は$\boxed{\ \ ヌ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第4問〜円板を軸の周りに回転してできる立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\mathrm{O}$を原点とする$\mathrm{xyz} $平面において、3点 $\mathrm{A(1,\dfrac{2}{\sqrt{3}}, 0), B(-1, \dfrac{2}{\sqrt{3}}, 0), C(0, 0, 2)}$ の定める平面$\mathrm{ABC}$ 上に$\mathrm{O}$ から垂線$\mathrm{OH}$ を下ろす。平面$\mathrm{ABC}$ において、$\mathrm{H}$ を中心とする半径$\mathrm{1}$の円板(内部を含む)$\mathrm{D}$ を考える。
(1)平面$\mathrm{z = t}$ が$\mathrm{D}$と交わるような$\mathrm{t}$の範囲を求めよ。
(2)$\mathrm{D}$を$\mathrm{z}$軸の周りに$\mathrm{1}$回転させるとき、$\mathrm{D}$が通過してできる立体$\mathrm{K}$の体積$\mathrm{V}$を求めよ。
この動画を見る 

数学基礎40「積分と面積公式」【高校数学ⅡB】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
積分と面積公式の解説動画です
この動画を見る 

17兵庫県教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#その他#不定積分・定積分#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣
$l_1:y=kx+2k$ $(k \in \mathbb{ R })$
$l_2:y=x^3-3x+2$
(1)$l_2$の極値
(2)k=0,$l_1$と$l_2$で囲まれた面積
(3)$l_1$と$l_2$が3点で交わるkの範囲
(4)$l_1$が$l_2$の変曲点を通るとき$l_1$と$l_2$で囲まれた面積
この動画を見る 
PAGE TOP