【高校数学】 数B-93 漸化式⑦ - 質問解決D.B.(データベース)

【高校数学】 数B-93 漸化式⑦

問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$

②$a_1=1,a_2=5,a_{n+2}-5a_{n+1}+6a_n=0$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$

②$a_1=1,a_2=5,a_{n+2}-5a_{n+1}+6a_n=0$
投稿日:2016.02.29

<関連動画>

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

【暗記じゃない…!】数列:興南高等学校~全国入試問題解法

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1/1,1/2,2/2,1/3,2/3,3/3,1/4,2/4,3/4,4/4,・・・
の時、左から85番目の分数?
この動画を見る 

千葉大 漸化式 良問再投稿

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$

以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2

出典:2013年千葉大学 過去問
この動画を見る 

大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=S$:実数
$(n+2)a_{n+1}=n\ a_n+2$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^m a_n=0$のとき$S$を$m$で表せ

出典:2023年東北大学 入試問題
この動画を見る 

東京医科大 見掛け倒しな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
この動画を見る 
PAGE TOP