【高校数学】 数B-93 漸化式⑦ - 質問解決D.B.(データベース)

【高校数学】 数B-93 漸化式⑦

問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$

②$a_1=1,a_2=5,a_{n+2}-5a_{n+1}+6a_n=0$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=3,a_2=5,a_{n+2}-3a_{n+1}+2a_n=0$

②$a_1=1,a_2=5,a_{n+2}-5a_{n+1}+6a_n=0$
投稿日:2016.02.29

<関連動画>

広島大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列${a_n}$
$a_{1}=\displaystyle \frac{1}{3},a_{n+1}=2a_{n}(1-a_{n})$

(1)
すべての自然数$n$で$a_{n} \lt \displaystyle \frac{1}{2}$を示せ

(2)
一般項を求めよ。

出典:1996年広島大学 過去問
この動画を見る 

【概要欄に問題掲載】大学入試問題#167 岡山県立大学2020 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$S_n=2a_n-n^2$のとき
一般項$a_n$を求めよ。

出典:2020年岡山県立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。

${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$

これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

10大阪府教員採用試験(数学:1番 数列の極限値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$-\frac{3}{2} < a_1 < 3$ , $a_{n+1}=\sqrt{2a_n+3}$
(1)$a_1 < a_2$
(2)$2 \leqq n, 0 < a_n < 3$
(3)$1 \leqq n, 0 < 3-a_n \leqq (\frac{2}{3})^{n-1}(3-a_1)$
(4)$\displaystyle \lim_{ n \to \infty } a_n$
この動画を見る 

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 
PAGE TOP