福田の数学〜明治大学2024全学部統一III第2問〜複素数平面上の点の移動と確率 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一III第2問〜複素数平面上の点の移動と確率

問題文全文(内容文):
$i$は虚数単位とし、$\omega =\frac{-1+\sqrt{3}i}{2}$とする。
投げたときに表と裏の出る確率がそれぞれ$\frac{1}{2}$の硬貨を用意する$ z_{0} = 0$ とおき、この硬貨を4回投げて、複素数$z_1, z_2, z_3, z_4$を次の規則により定める。
$n = 1, 2, 3, 4$ に対して、$n$回目に投げたとき、表が出たならば$z_n = \omega z_{n-1}$とし、 裏が出れば$ z_n = z_{n−1}+1$とする。例えば、4回投げた結果、順に「裏、表、裏、 表」と出た場合、$z_{1} = z_{0} + 1 = 1, z_2 = \omega z_1 = \omega, z_{3} = z_{2} + 1 = \omega + 1, z_{4} = \omega z_{3} = \omega ^ 2 + \omega$ となる。
上の規則により$z_1, z_2, z_3, z_4$を定めたとき、$P$を$ z_{4} = 0 $となる確率、$Q$を$ z_{4} = 1$ となる確率、$R$を $z_{4} = \omega + 1$ となる確率とすると$2^4P=\fbox{ア}、2Q=\fbox{イ}, 2R=\fbox{ウ}$である。また、$S$を$|z_4|=1$となる確率、$T$を$|z_4|=2$となる確率とすると$2^4S=\fbox{エ}, 2^4T=\fbox{オ}$である。
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とし、$\omega =\frac{-1+\sqrt{3}i}{2}$とする。
投げたときに表と裏の出る確率がそれぞれ$\frac{1}{2}$の硬貨を用意する$ z_{0} = 0$ とおき、この硬貨を4回投げて、複素数$z_1, z_2, z_3, z_4$を次の規則により定める。
$n = 1, 2, 3, 4$ に対して、$n$回目に投げたとき、表が出たならば$z_n = \omega z_{n-1}$とし、 裏が出れば$ z_n = z_{n−1}+1$とする。例えば、4回投げた結果、順に「裏、表、裏、 表」と出た場合、$z_{1} = z_{0} + 1 = 1, z_2 = \omega z_1 = \omega, z_{3} = z_{2} + 1 = \omega + 1, z_{4} = \omega z_{3} = \omega ^ 2 + \omega$ となる。
上の規則により$z_1, z_2, z_3, z_4$を定めたとき、$P$を$ z_{4} = 0 $となる確率、$Q$を$ z_{4} = 1$ となる確率、$R$を $z_{4} = \omega + 1$ となる確率とすると$2^4P=\fbox{ア}、2Q=\fbox{イ}, 2R=\fbox{ウ}$である。また、$S$を$|z_4|=1$となる確率、$T$を$|z_4|=2$となる確率とすると$2^4S=\fbox{エ}, 2^4T=\fbox{オ}$である。
投稿日:2024.09.03

<関連動画>

数学「大学入試良問集」【16−1 複素数平面と解と係数の関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #複素数平面#複素数平面#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#数学(高校生)#数C#京都大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$c$を実数とする。$x$についての2次方程式
$x^2+(3-2c)x+c^2+5=0$が2つの解$\alpha,\ \beta$を持つとする。
複素平面上の3点$\alpha,\beta,c^2$が三角形の3頂点になり、その三角形の重心は$0$であるという。
$c$を求めよ。
この動画を見る 

【数C】【複素数平面】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が、$z+\dfrac 1z=2\cos\theta$を満たすとき、次の問いに答えよ。
(1)$z$を$\theta$を用いて表せ。
(2)$n$が自然数のとき、等式、$z^n+\dfrac{1}{z^n}=2\cos n\theta$が成り立つことを示せ。
この動画を見る 

【数C】【複素数平面】高次方程式3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
この動画を見る 

18愛知県教員採用試験(数学:10番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $w=\frac{z-2i}{z+i},|z|=2$
(1)wはどのような図形か
(2)|w-i|の最大値
この動画を見る 

【数C】【複素数平面】高次方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$を自然数とし、$\displaystyle \alpha = \cos \frac{\pi}{n}+i\sin \frac{\pi}{n}$とする。次の問いに答えよ。
(1) $1+ \alpha +\alpha^2 + \cdots\cdots +\alpha^{2n-1}$の値を求めよ。
(2) $z^{2n}=1$の解は$1, \alpha, \alpha^2, \cdots\cdots, \alpha^{2n-1}$であることを示せ。
この動画を見る 
PAGE TOP