3乗根の方程式 - 質問解決D.B.(データベース)

3乗根の方程式

問題文全文(内容文):
これを解け.$(x\gt 0)$
$\sqrt[3]{9+\sqrt x}+\sqrt[3]{9-\sqrt x}=3・2^{\frac{1}{3}}$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\gt 0)$
$\sqrt[3]{9+\sqrt x}+\sqrt[3]{9-\sqrt x}=3・2^{\frac{1}{3}}$
投稿日:2021.08.02

<関連動画>

三角形の面積

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三角形の面積に関して解説していきます.
この動画を見る 

はなでんの解説頼まれた

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$2022^{ 2022 }$を10で割った余りの数は?
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

整式の剰余 xの2023乗

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{2023}を\displaystyle \sum_{n=1}^{16} x^n=1+x+x^2+・・・・+x^{16}$で割った余りを求めよ.

この動画を見る 

福田のわかった数学〜高校1年生081〜確率(1)くじ引き(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(1) くじ引き(1)\\
10本中3本当たりのくじから\\
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。\\
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、\\
1人だけが当たる確率を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP