福田のわかった数学〜高校1年生059〜図形の計量(10)正四面体の各辺に接する球の半径 - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生059〜図形の計量(10)正四面体の各辺に接する球の半径

問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(10)
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
単元: #数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(10)
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
投稿日:2021.09.21

<関連動画>

別に積分しろとは言ってません。(広陵(改))

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
SとTどっちの面積が大きい?
*図は動画内参照

広陵高等学校
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(2)〜三角形の内接円の半径と不定方程式

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?

2023早稲田大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
この動画を見る 

三角比の拡張 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る 

【数Ⅰ】【図形と計量】(1)cos36°を求めよ(2)正五角形の対角線の長さを求めよ。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)cos36°を求めよ
(2)正五角形の対角線の長さを求めよ。
この動画を見る 
PAGE TOP