【わかりやすく】弧度法について解説(数学Ⅱ 三角関数) - 質問解決D.B.(データベース)

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
投稿日:2023.08.30

<関連動画>

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(4) 三角不等式の基礎\\
(1)\sin\theta \gt -\frac{1}{2} (2)\cos\theta \leqq \frac{\sqrt3}{2} (3)\tan\theta \gt -1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
この動画を見る 

【分ければカンタン!】三角関数のグラフの移動と拡大を5分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数A#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角関数のグラフの移動と拡大について解説します。
この動画を見る 

【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数⑥

0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$

(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
この動画を見る 

19奈良県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP