【高校数学】数Ⅰ-18 1次不等式②(練習編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-18 1次不等式②(練習編)

問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
投稿日:2014.04.09

<関連動画>

【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の方程式が実数解をもつように、実数 $m$ の値の範囲を定めよ。
$(1)\, x^2+2mx+3=0$
$(2)\, x^2+mx+m=0$

問題2
2次方程式 $x^2-2mx-4m=0$ が次の条件を満たすように、定数 $m$ の値の範囲を定めよ。
$(1)$ 異なる2つの実数解をもつ
$(2)$ 実数解をもたない

問題3
次の条件を満たすように、実数 $m$ の値の範囲を定めよ。
$(1)$ 2次関数 $y=x^2-2mx+2m+3$ のグラフが $x$ 軸と共有点をもつ
$(2)$ 2次関数 $y=x^2+2mx-m+2$ のグラフが $x$ 軸と共有点をもたない
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る 

ごめんなさい

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
b>a>0
a^2=2+√3
a^2=2-√3
(1)abの値を求めよ。
(2)a-b
この動画を見る 

式の値 國學院久我山

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a-b=\sqrt 6$, ab=2のとき$a^2-b^2=?$
この動画を見る 
PAGE TOP