大学入試問題#359「読みの入った部分積分で解いてみた」 神戸大学(2014) #定積分 - 質問解決D.B.(データベース)

大学入試問題#359「読みの入った部分積分で解いてみた」 神戸大学(2014) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{2x\ sin\ x}{\cos^2x}dx$

出典:2014年神戸大学 入試問題
チャプター:

00:00 問題紹介
00:07 本編スタート
05:13 作成した解答①
05:24 作成した解答②
05:34 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{2x\ sin\ x}{\cos^2x}dx$

出典:2014年神戸大学 入試問題
投稿日:2022.11.06

<関連動画>

大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
この動画を見る 

大学入試問題#250 福井大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を0以上の整数とする。
次の2つの条件をみたす関数$f_n(x)$を求めよ。
(ⅰ)$f_0(x)=e^x$
(ⅱ)$f_n(x)=\displaystyle \int_{0}^{x}(n+t)f_{n-1}(t)dt$

出典:2012年福井大学 入試問題
この動画を見る 

#高専#ウォリス積分_15#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$

(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
この動画を見る 

大学入試問題#374「技をかける前の味付け」 富山県立大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{3+4\cos^2x}dx$

出典:2015年富山県立大学 入試問題
この動画を見る 

大学入試問題#327 埼玉大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{9+16\sin^2x}dx$

出典:2010年埼玉大学 入試問題
この動画を見る 
PAGE TOP