【わかりやすく】三角形の頂点Pの軌跡を求める問題(数学Ⅱ 図形と方程式) - 質問解決D.B.(データベース)

【わかりやすく】三角形の頂点Pの軌跡を求める問題(数学Ⅱ 図形と方程式)

問題文全文(内容文):
2点$A(-2,0),B(3,0)$と点$P$を頂点とする$\triangle PAB$が$PA:PB=2:3$を満たしながら変化するとき、点$P$の軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2点$A(-2,0),B(3,0)$と点$P$を頂点とする$\triangle PAB$が$PA:PB=2:3$を満たしながら変化するとき、点$P$の軌跡を求めよ。
投稿日:2023.10.24

<関連動画>

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$2^{32}$ vs $3^{21}$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数のグラフ、方程式 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$

次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$

次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$

(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
この動画を見る 

高2から東大に挑戦!二次方程式と対数の融合問題!基本がぎゅっと詰まってます【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2次方程式 x^2-2xloga_b+logb_a=0 が異なる実数解α,βをもち、0<α<1<β となるものとする。このときa,b,1の大きさの順序はどのようなものになるか?
この動画を見る 

近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。

早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る 

富山県立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$

出典:2009年富山県立大学 過去問
この動画を見る 
PAGE TOP