"2025"を含む予想問題(2):入試予想問題~全国入試問題解法 - 質問解決D.B.(データベース)

"2025"を含む予想問題(2):入試予想問題~全国入試問題解法

問題文全文(内容文):
$4m^2-2025=n^2-2$
$となる自然数m,nの組のうちmが最小のものを求めよ。$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$4m^2-2025=n^2-2$
$となる自然数m,nの組のうちmが最小のものを求めよ。$
投稿日:2024.12.27

<関連動画>

東工大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ

(2)
$a$の素因数は3と5以外にないことを示せ

(3)
$a$を求めよ

出典:2006年東京工業大学 過去問
この動画を見る 

慶應義塾志木高校 計算の工夫

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$m$を求めよ.
$18\times 19\times 20\times 21+1=m^2$

2020慶應志木過去問
この動画を見る 

余りに関する問題 2022灘中(改)

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{2022}$を17で割った余りは?

2022灘中学校
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$\dfrac{10^{2019}+1}{10^{2020}+1}$ VS $\dfrac{10^{2020}+1}{10^{2021}+1}$
この動画を見る 

【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
この動画を見る 
PAGE TOP