福田の数学〜立教大学2025経済学部第3問〜3次関数のグラフと直線の共有点の個数 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025経済学部第3問〜3次関数のグラフと直線の共有点の個数

問題文全文(内容文):

$\boxed{3}$

$k$を実数とする。

$3$次関数$f(x)=x^3-x^2+1$に対して、

座標平面上の曲線$C$を$C:y=f(x)$とする。

また、$C$上の点$P(1,1)$を通り、

傾きが$k$である直線を$\ell$とする。

このとき、次の問いに答えよ。

(1)$\ell$の方程式を$k$を用いて表せ。

(2)$f(x)$の導関数$f'(x)$を求めよ。

(3)$f(x)$の極値を求めよ。

また、そのときの$x$の値を求めよ。

(4)$\ell$と$C$がちょうど$2$個の共有点を

もつような$k$の値を求めよ。

(5)$\ell$と$C$が異なる$3$個の共有点をもつような

$k$の値の範囲を求めよ。

(6)(5)のとき、異なる$3$個の共有点の$y$座標を

小さい方から順に$y_1,y_2,y_3$とする。

このとき、

比の等式$(y_2-y_1):(y_3-y_2)=1:2$を

満たすような$k$の値を求めよ。

$2025$年立教大学経済学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$k$を実数とする。

$3$次関数$f(x)=x^3-x^2+1$に対して、

座標平面上の曲線$C$を$C:y=f(x)$とする。

また、$C$上の点$P(1,1)$を通り、

傾きが$k$である直線を$\ell$とする。

このとき、次の問いに答えよ。

(1)$\ell$の方程式を$k$を用いて表せ。

(2)$f(x)$の導関数$f'(x)$を求めよ。

(3)$f(x)$の極値を求めよ。

また、そのときの$x$の値を求めよ。

(4)$\ell$と$C$がちょうど$2$個の共有点を

もつような$k$の値を求めよ。

(5)$\ell$と$C$が異なる$3$個の共有点をもつような

$k$の値の範囲を求めよ。

(6)(5)のとき、異なる$3$個の共有点の$y$座標を

小さい方から順に$y_1,y_2,y_3$とする。

このとき、

比の等式$(y_2-y_1):(y_3-y_2)=1:2$を

満たすような$k$の値を求めよ。

$2025$年立教大学経済学部過去問題
投稿日:2025.06.02

<関連動画>

福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。

2020早稲田大学教育学部過去問
この動画を見る 

18愛知県教員採用試験(数学:6番 指数関数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
この動画を見る 

これ知ってる?ある公式を知ってれば一瞬で解ける問題! #Shorts

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
この動画を見る 

二次方程式の応用

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>b≧c>0 のとき、次の空欄に記号≧ ,≦ ,> ,<のどれかを記入して正しい関係が成り立つようにせよ。ただし、これが不可能の場合には×とせよ。
(1)$2(ac+b^2 ) □ b(4a+c)$
(2)$a^2+2bc□2ab+ca$
(3)$a^2+2(b^2+c^2) □2a(b+c)$
この動画を見る 
PAGE TOP