【時短】"6分の1公式"を9分でマスター【直前に5点UP】(数学IIB) - 質問解決D.B.(データベース)

【時短】"6分の1公式"を9分でマスター【直前に5点UP】(数学IIB)

問題文全文(内容文):
【数学IIB】"6分の1公式"の解説動画です
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IIB】"6分の1公式"の解説動画です
投稿日:2023.01.04

<関連動画>

大学入試問題#140 横浜市立大学医学部(2008) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2}x^4\sqrt{ 4-x^2 }\ dx$を計算せよ。

出典:2008年横浜市立大学医学部 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。

2017大阪大学理系過去問
この動画を見る 

#高専_6#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面$z=t$がKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面$z=t$で切った断面積A(t)を求めよ。
(3)平面$z=t$がLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面$z=t$で切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 

大学入試問題#431「もはや盤上この一手!!」 福井大学医学部2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin3x}{\sin\ x+\cos\ x} dx$

出典:2014年福井大学医学部 入試問題
この動画を見る 
PAGE TOP