【数Ⅱ】微分法と積分法:x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。 - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。

問題文全文(内容文):
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
投稿日:2019.05.20

<関連動画>

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

福田のわかった数学〜高校2年生045〜軌跡(12)2本の直交する接線が引ける点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(12) 接線直交
点Pは放物線$C:y=x^2$へ2本の接線が引け、その2本の
接線は直交するという。そのような点Pの軌跡を求めよ。
この動画を見る 

神戸大 虚数解を持つ3次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+ax^2+bx+c=0$
$a,b,c$は整数
1つの解は$\displaystyle \frac{3+\sqrt{ 7 }i}{2}$
$0 \leqq x \leqq 1$に1つの実数解をもつ$(a,b,c)$の組すべて求めよ

出典:神戸大学 過去問
この動画を見る 

#29 数検1級1次 過去問 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
この動画を見る 

九州大学 三倍角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る 
PAGE TOP