【数Ⅱ】微分法と積分法:x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。 - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。

問題文全文(内容文):
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
投稿日:2019.05.20

<関連動画>

#千葉大学2018#不定積分#数学者

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \sin^3x \cos^2x$ $dx$

出典:2018年千葉大学
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a\\
⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a  \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0\\
⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2  \\
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

58秒で二項定理を理解しよう

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
二項定理の解説動画です
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}

2022東京大学文系過去問
この動画を見る 

熊本大 対数関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
この動画を見る 
PAGE TOP