平方根の勉強に - 質問解決D.B.(データベース)

平方根の勉強に

問題文全文(内容文):
正方形ABCDの面積=?
*図は動画内参照

青森県
単元: #数学(中学生)#中2数学#中3数学#平方根#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
正方形ABCDの面積=?
*図は動画内参照

青森県
投稿日:2021.05.14

<関連動画>

5で割った余り 法政大学高校

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#法政大学高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
$2023^3+2024^4$
を5で割ったときの余りは?
この動画を見る 

【高校受験対策/数学】死守76

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#比例・反比例#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守76

①$2-(-5)$を計算しなさい。

②$4x-2x×\frac{1}{2}$を計算しなさい。

③$-6a^3b^2÷(-4ab)$を計算しなさい。

④$x=-2$、$y=3$のとき$(2x-y-6)+3(x+y+2)$の値を求めなさい。

③下の図の三角柱$ABC-DEF$において、 辺$AB$とねじれの位置にある辺をすべて答えなさい。

⑥$n$を自然数とする。$\sqrt{24n}$が自然数となるような$n$のうち、最も小さい数を求めなさい。

⑦2つの容器A、Bに牛乳が入っており、容器Bに入っている牛乳の量は、容器Aに入っている牛乳の量の2倍である。
容器Aに$140ml$の牛乳を加えたところ、 容器Aと容器Bの牛乳の量の比が$5:3$となった。
はじめに容器Aに入って いた牛乳の量は何$ml$であったか、求めなさい。

⑧あるクラスの女子生徒20人が体カテストで反復横とびを行い、
その記録を整理したところ、20人の記録の中央値は50回であった。
この20人の記録について、次のア~エのうち、必ず正しいといえるものを1つ選びなさい。

ア 20人の記録の合計は1000回である。
イ 20人のうち、記録が50回であった生徒が最も多い。
ウ 20人のうち、記録が60回以上であった生徒は1人もいない。
エ 20人のうち、記録が50回以上であった生徒が少なくとも10人いる。
この動画を見る 

【数学】中2-24 連立方程式の利用⑤ 割合の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①ゆきさんは、Tシャツとスカートを$1$組買いました。
定価で買うと$4800$円のところを、
Tシャツを定価の$2$割引き、
スカートを定価の$30%$引きで買ったので
$3540$円でした。
それぞれの定価はいくら?

②$12%$の食塩水と$7%$の食塩水を混ぜ合わせて、$10%$の食塩水を$500g$つくります。
$2$種類の食塩水をそれぞれ何$g$ずつ混ぜればいい?
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【補助線をどこに引く !?】図形:成蹊高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#成蹊高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ l $と$ m $が平行であるとき,$ \angle x $の大きさを求めよ.

成蹊高等学校過去問
この動画を見る 
PAGE TOP