福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{2}}$ $\triangle OAB$において、辺$OA$を$1:1$に内分する点を$D$、辺$OB$を$2:1$に内分する点を$E$とする。線分$BD$と線分$AE$の交点を$F$、$\overrightarrow{ OA }=\overrightarrow{ a }$, $\overrightarrow{ OB }=\overrightarrow{ b }$,$\ |\overrightarrow{ a }|=a$,$ |\overrightarrow{ b }|=b$
として、次の問いに答えよ。
$(1)\overrightarrow{ OF }$を$\overrightarrow{ a }$ , $\overrightarrow{ b }$を用いて表せ。
さらに、$\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF }$ として、以下の問いに答えよ。
$(2)$内積$\overrightarrow{ a }・\overrightarrow{ b }$を$a$, $b$を用いて表せ。
$(3)b=1$のとき、$a$の取りうる値の範囲を求めよ。
$(4)b=1$のとき、$\triangle OAB$の面積$S$の最大値と、そのときの$a$の値を求めよ。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $\triangle OAB$において、辺$OA$を$1:1$に内分する点を$D$、辺$OB$を$2:1$に内分する点を$E$とする。線分$BD$と線分$AE$の交点を$F$、$\overrightarrow{ OA }=\overrightarrow{ a }$, $\overrightarrow{ OB }=\overrightarrow{ b }$,$\ |\overrightarrow{ a }|=a$,$ |\overrightarrow{ b }|=b$
として、次の問いに答えよ。
$(1)\overrightarrow{ OF }$を$\overrightarrow{ a }$ , $\overrightarrow{ b }$を用いて表せ。
さらに、$\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF }$ として、以下の問いに答えよ。
$(2)$内積$\overrightarrow{ a }・\overrightarrow{ b }$を$a$, $b$を用いて表せ。
$(3)b=1$のとき、$a$の取りうる値の範囲を求めよ。
$(4)b=1$のとき、$\triangle OAB$の面積$S$の最大値と、そのときの$a$の値を求めよ。
投稿日:2021.06.06

<関連動画>

【ベクトル方程式→図の考え方はこれ!】ベクトル方程式の基礎を解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトル方程式の基礎について解説します。
この動画を見る 

福田の数学〜九州大学2023年文系第3問〜ベクトルの平行条件と内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。以下の問いに答えよ。
(1)$\overrightarrow{m}$と$\overrightarrow{n}$が平行であるための必要十分条件はD=0であることを示せ。
以下、D≠0とする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}$・$\overrightarrow{v}$=$\overrightarrow{n}$・$\overrightarrow{w}$=1, $\overrightarrow{m}$・$\overrightarrow{w}$=$\overrightarrow{n}$・$\overrightarrow{v}$=0
を満たすものを求めよ。
(3)座標平面上のベクトル$\overrightarrow{q}$に対して
$r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$
を満たす実数$r$と$s$を$\overrightarrow{q}$, $\overrightarrow{v}$, $\overrightarrow{w}$を用いて表せ。

2023九州大学文系過去問
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(5)〜ベクトルの基本的な演算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\bigtriangleup \mathrm{ABC}$ と点 $\mathrm{P}$ があり、$2\vec{\mathrm{AP}}+3\vec{\mathrm{BP}}+5\vec{\mathrm{CP}}=\vec{0}$ を満たしている。このとき、$\vec{\mathrm{AB}}=\vec{b}, \, \vec{\mathrm{AC}}=\vec{c}$ として、$\vec{\mathrm{AP}}$ を $\vec{b}$ と $\vec{c}$ で表せ。
この動画を見る 

【裏技】ベクトルと面積比、これ知らない奴来い!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
ベクトルと面積比の説明動画です
この動画を見る 

【数学B/平面ベクトル】ベクトルの内積(成分表示の内積計算)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$の内積と、そのなす角$\theta$を求めよ。
(1)$\vec{ a }=(4,2),\vec{ b }=(3,-6)$
(2)$\vec{ a }=(-1,1),\vec{ b }=(1-\sqrt{ 3 },1+\sqrt{ 3 })$
この動画を見る 
PAGE TOP