ただの分数の和 - 質問解決D.B.(データベース)

ただの分数の和

問題文全文(内容文):
$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{10}$+$\frac{1}{15}$+$\frac{1}{21}$+$\frac{1}{28}$+$\cdots$+$\frac{□}{□}$=?
*分母の数は階差数列
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{10}$+$\frac{1}{15}$+$\frac{1}{21}$+$\frac{1}{28}$+$\cdots$+$\frac{□}{□}$=?
*分母の数は階差数列
投稿日:2023.09.07

<関連動画>

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

【高校数学】 数B-65 等比数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$r$を掛けると,次の項が得られるとき,
この数列を等比数列といい,$r$をその公比という.
このとき,すべての自然数$n$について,①$a_{n+1}=\quad$が成り立つ.
また,初項$a$,公比$r$の等比数列$\{a_n \}$の一般項は
②$a_n=\quad$で求めることができる.

次の等比数列の$\Box$に適する数を入れ,一般項を求めよう.

③$1,3,9,\Box,\Box,・・・$

④$\Box,10,-20,\Box,-80,・・・$

⑤$3,1,\Box,\dfrac{1}{9},\Box,・・・$
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第2問〜数列の和から一般項を求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$に対して

$T_n=\displaystyle \sum_{k=1}^n \dfrac{(k+2)!}{(k-1)!}a_k (n=1,2,3,\cdots)$

とおくとき、

$T_n=\left(n-\dfrac{1}{2}\right)^2 (n=1,2,3,\cdots)$

が成り立つとする。ただし、$0!=1$である。

(1)$a_1=\dfrac{\boxed{ア}}{\boxed{イウ}},a_2=\dfrac{\boxed{エ}}{\boxed{オ}}$である。

(2)$n\geqq 2$に対して$T_n-T_{n-1}=\boxed{カ}n-\boxed{キ}$が

成り立つから、

$a_n=r^n\dfrac{n-\boxed{ク}}{(n+s)(n+t)(n+u)} (n=2,3,4,\cdots)$

である。ただし、ここに$r=\boxed{ケ}$であり、

$s\lt t \lt u$として$s=\boxed{コ},t=\boxed{サ},u=\boxed{シ}$である。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

【数B】数列: 次の条件を満たす等差数列anの一般項を求めよ。a1+a4=12,a1+a7=18

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
この動画を見る 

福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る 
PAGE TOP