#福岡大学医学部2018#極限_61 - 質問解決D.B.(データベース)

#福岡大学医学部2018#極限_61

問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \sqrt x \left(\sqrt{1+x}-\sqrt x \right)$を解け.

2018福岡大学医学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \sqrt x \left(\sqrt{1+x}-\sqrt x \right)$を解け.

2018福岡大学医学部過去問題
投稿日:2024.09.17

<関連動画>

【数Ⅱ】三角関数と方程式 2 sinとcosの1次方程式【合成して三角関数の個数を減らす】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\sin2x=\cos x$$(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1$$(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0$$(0\leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x cos x-1=0$$(0\leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x\cos x-1=0$$(0 \leqq x \lt 2\pi)$
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{\sqrt5}$ VS $ 5^{\sqrt3}$ どちらが大きいか?
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xの関数$f(x)$を$f(x)=x^3$とする。
(1)xの関数$g(x)$を$g(x)=x^3-2x^2-x+3$とする。曲線$y=f(x)$と$y=g(x)$は
3個の交点をもつ。それら交点を$\ x \ $座標が小さい順にA,B,Cとすると、
点$A,B,C$の$\ x\ $座標はそれぞれ$ \boxed{ア},\ \boxed{イ},\ \boxed{ウ}$ である。

曲線$y=g(x)$の接線の傾きが最小となるのは、
接点の$\ x\ $座標が$\frac{\boxed{エ}}{\boxed{オ}}$のときで、
その最小値は$-\frac{\boxed{カ}}{\boxed{\ \ キ\ \ }}$である。
また、点Bを通る$y=g(x)$の接線の傾きの最小値は$-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(2)$x$ の関数$h(x)$が

$h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4$
を満たすとき、$h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4$である。
曲線$y=f(x)$と$y=h(x)$の交点の中点は$(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})$であり、

$y=f(x)$と$y=h(x)$で囲まれる図形の面積は
原点を通る直線$y=\boxed{\ \ コ\ \ }x$で2等分される。

2022明治大学全統過去問
この動画を見る 

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 

指数の計算 log使わずに解ける

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$のとき
$4^{\frac{x}{y}} =?$
この動画を見る 
PAGE TOP