【中学数学】連立方程式:基礎の基礎から解説!その4 ついに計算で! - 質問解決D.B.(データベース)

【中学数学】連立方程式:基礎の基礎から解説!その4 ついに計算で!

問題文全文(内容文):
次の連立方程式を解け。
x+y=10,x-y=6
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の連立方程式を解け。
x+y=10,x-y=6
投稿日:2021.06.08

<関連動画>

地面掘るだけで20兆円貰える確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
片っ端から地面を掘って徳川埋蔵金が出てくる確率を計算
この動画を見る 

【数学】中2-40 一次関数の利用③ 水槽の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎200L入る水槽を満水にしたい。
はじめの8分間はA管のみで水を入れて
その後、B管も使って水を入れる。
x分後に水層に入っている水の量をyLとする。

①A管から入る水の量は1分間に何L?
②B管から入る水の量は1分間に何L?
③$8 \leqq x \leqq 24$のときのyをxの式で表すと?
④同じ容積の水槽に毎分7L入るC管で水を入れていく。
上のようにA管とB管を使って水を入れたときと水の量が同じになるのは何分後?そのとき何L?
※グラフは動画内参照
この動画を見る 

【テスト対策・中2】2章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x,y$についての3つの二元一次方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=8 \\\
4x-5y=3 \\\
5x-ay=4
\end{array}
\right.
\end{eqnarray}$
のすべてにあてはまる解があるとき,
その解と$a$の値を求めなさい.

②次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2a+b-c=-2 \\\
2b+c-a=-3 \\\
2c+a-b=7
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-図形21/後編

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21

Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$\angle APQ=90°$です。
このとき、次の各問に答えなさい。

①$△APQ$と$△CDQ$が合同であることを証明しなさい。

②$\angle PAQ=52°$のとき、$\angle PQC$の大きさを求めなさい。

③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る 
PAGE TOP