【高校数学】 数A-20 確率② ・ さいころ編Part.2 - 質問解決D.B.(データベース)

【高校数学】  数A-20  確率② ・ さいころ編Part.2

問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
投稿日:2014.06.07

<関連動画>

2つの自然数が互いに素である確率 なぜかアレが出てきます

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
任意の2つの自然数が互いに素である確率を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率は$\frac{\boxed{コ}}{\boxed{サ}}$である。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率は$\frac{\boxed{シ}}{\boxed{スセ}}$である。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

2020明治大学理工学部過去問
この動画を見る 

福田の数学〜北海道大学2024年文系第4問〜正八面体のサイコロと反復試行の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面とよぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を2回行ったとき、持ち点が1である確率を求めよ。
(2)この試行を4回行ったとき、持ち点が10以下である確率を求めよ。
この動画を見る 

【受験対策】数学-確率②

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
① 1.2.3.4.5の数字を1つずつ記入した5枚のカードがある。
このカードをよくきってから1枚ずつ2回続けて引き、引いた順に左から並べて2けたの整数をつくる。
このとき、できた2けたの整数が4の倍数である確率を求めよう。

② トランプのスペードのカードが1枚、ハート、ダイヤのカードがそれぞれ2枚ずつある。
この5枚のカードをよくきってから、2枚のカードを同時に取り出すとき、1枚はハートのカードで1枚はダイヤのカードとなる確率を求めよう。

③ 袋の中に、赤玉が2個、白玉が3個入っている。
この袋の中から、はじめにAさんが玉を1個取り出す。
取り出した玉を袋に戻さず、次にBさんが玉を1個取り出す。
このとき、2人の取り出した玉が異なる色であればAさんの勝ち、同じ色であればBさんの勝ちとする。
AさんとBさんのうちで勝ちやすいのはどちらか、次の㋐~㋒から正しいものを1つ選び、それが正しいことの理由を、2人の勝つ確率をもとに書こう。
ただし、どの玉が取り出されることも同様に確からしいものとする。

㋐ Aさん

㋑ Bさん

㋒ 2人とも同じ
この動画を見る 

見掛け倒しの「どっちがでかい?」

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$P_{2022} vs P_{2023}$

$P_n$はサイコロをn回ふって出た目の和が7の倍数になる確率を求めよ.
この動画を見る 
PAGE TOP