福田の数学〜上智大学2024TEAP利用型理系第4問〜漸化式と証明 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024TEAP利用型理系第4問〜漸化式と証明

問題文全文(内容文):
次の漸化式 $(\mathrm{A})$ を満たす数列 $\{ a_n\}$ を考える。
$(\mathrm{A}):$$a_{n+2}=na_{n+1}-a_n$$ \quad (n=1.2.3.\cdots)$
(1) $(\mathrm{A})$ を満たす数列を $1$つあげよ。
(2) $2$ つの数列 $\{ a_n\}$ と $\{ b_n\}$ が $(\mathrm{A})$ を満たすとする。どんな実数 $x,y$ に対しても数列 $\{ xa_n + yb_n \}$ が $(\mathrm{A})$ を満たすことを証明せよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式 $(\mathrm{A})$ を満たす数列 $\{ a_n\}$ を考える。
$(\mathrm{A}):$$a_{n+2}=na_{n+1}-a_n$$ \quad (n=1.2.3.\cdots)$
(1) $(\mathrm{A})$ を満たす数列を $1$つあげよ。
(2) $2$ つの数列 $\{ a_n\}$ と $\{ b_n\}$ が $(\mathrm{A})$ を満たすとする。どんな実数 $x,y$ に対しても数列 $\{ xa_n + yb_n \}$ が $(\mathrm{A})$ を満たすことを証明せよ。
投稿日:2024.09.28

<関連動画>

【数B】【数列】漸化式2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
(1)$a_1 = 10$, $a_{n+1} = 2a_n + 2^{n+2}$
(2)$a_1 = 3$, $a_{n+1} = 6a_n + 3^{n+1}$
この動画を見る 

明けましておめでとうございます。変な問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$50^{99}$ VS $99!$
この動画を見る 

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

【数B】数列:種々の数列格子点

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の曲線$y=-nx^2+2n^2x$とx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)$A_1、A_2$の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値が$x=k(k=0,1,2,・・・,2n)$である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
この動画を見る 

京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
この動画を見る 
PAGE TOP