中学生の知識でオイラーの公式を理解しよう Vol 7 弧度法 sinの微分 - 質問解決D.B.(データベース)

中学生の知識でオイラーの公式を理解しよう Vol 7 弧度法 sinの微分

問題文全文(内容文):
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法 
単元: #複素数平面#微分とその応用#複素数平面#色々な関数の導関数#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法 
投稿日:2017.07.08

<関連動画>

藤田医科大 ドモアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。
互いに異なる0でない複素数$\alpha,\beta,\gamma$が、
$0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0$, 
$2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0$
を満たし、$\alpha,\beta,\gamma$のそれぞれが正六角形OABCDEの頂点のいずれかであるとする。
(1)$\frac{\beta}{\alpha}$を求め、$\alpha,\beta$がそれぞれどの頂点か答えよ。
(2)組$(\alpha,\beta,\gamma)$を全て求め、それぞれの組について正六角形OABCDEを
複素数平面上に図示せよ。

2022名古屋大学理系過去問
この動画を見る 

18東京都教員採用試験(数学:複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
1⃣-(4)
Z \in \mathbb{ C } , |Z|=1とする
$w=\frac{z+4}{z-2}$のとき|w|の最大値を求めよ
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る 

【数C】【複素数平面】複素数の大きさ・対称式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\alpha,\beta$は複素数とする。$|\alpha|=|\beta|=1,\alpha+\beta+1=0$のとき、$\alpha^2+\beta^2$の値を求めよ。
この動画を見る 
PAGE TOP