福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$  (2)$\cos\theta=\frac{\sqrt3}{2}$  (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$  (2)$\cos\theta=\frac{\sqrt3}{2}$  (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
投稿日:2021.10.07

<関連動画>

福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。

(1)$0\leqq x \leqq \pi$において、

曲線$y=f(x)$の概形を描け。

ただし、凹凸は調べなくてよい。

(2)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。

(3)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$で囲まれた図形の

面積$S$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

15東京都教員採用試験(数学:3番 積分)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣$C_1:y=sin2x,C_2:y=k sinx$
$0 \leqq x \leqq \frac{\pi}{2}$ , $0 < k <2$
(1)$C_1$とx軸で囲まれた図形の面積
(2)$C_1$と$C_2$の原点以外の支点のx座標をαとする。cosαを求めよ。
(3)$C_1$とx軸で囲まれた部分の面積を$C_2$が2等分するときkの値を求めよ。
この動画を見る 

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

大学入試問題#245 津田塾大学2014 #三角関数 基本的な問題ですが、数IIの範囲で解ける良問だと思いました。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \leqq 2\pi$
$\sin^3\theta+\cos^3\theta$の最大値、最小値を求めよ。

出典:2014年津田塾大学 入試問題
この動画を見る 
PAGE TOP