重積分②(高専数学 微積II,数学検定1級解析) - 質問解決D.B.(データベース)

重積分②(高専数学 微積II,数学検定1級解析)

問題文全文(内容文):
重積分(累次積分)
ex1
$∬_0 \frac{y}{x}dx dy$
$D : 1 \leqq x \leqq 3$ , $x \leqq y \leqq 2x$
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
重積分(累次積分)
ex1
$∬_0 \frac{y}{x}dx dy$
$D : 1 \leqq x \leqq 3$ , $x \leqq y \leqq 2x$
投稿日:2020.10.26

<関連動画>

#37 数検1級1次 過去問 重積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:1 \leqq x \leqq 2,x \leqq y \leqq x^2$
$\displaystyle \int \displaystyle \int \cos\displaystyle \frac{\pi y}{x}\ dxdy$を計算せよ。
この動画を見る 

#15 数検1級1次 過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る 

重積分⑫-1【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
平面上の図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
△OABの重心Gは
$G(\frac{0+3+3}{3},\frac{0+0+3}{3})$
$G(2,1)$
*図は動画内参照
この動画を見る 

重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#積分とその応用#2次曲線#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学検定#数学検定1級#数学(高校生)#数C#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る 

重積分⑨-6【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$

これを解け.
この動画を見る 
PAGE TOP