大学入試問題#266 兵庫医科大学(2011) #対称式 - 質問解決D.B.(データベース)

大学入試問題#266 兵庫医科大学(2011) #対称式

問題文全文(内容文):
$x,y$:実数
$x^2-xy+y^2=16$のとき
$x+y+xy$の最大値を求めよ。

出典:2011年兵庫医科大学 入試問題
チャプター:

00:00 問題提示
00:14 本編スタート
04:56 作成した解答①
05:07 作成した解答②
05:18 エンディング(楽曲提供:兄いえてぃ様)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$x,y$:実数
$x^2-xy+y^2=16$のとき
$x+y+xy$の最大値を求めよ。

出典:2011年兵庫医科大学 入試問題
投稿日:2022.07.29

<関連動画>

福田の数学〜2点が動くときはどちらか一方を固定する〜東京大学2018年文系第4問〜平面ベクトルと点の動ける領域

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 放物線$y=x^2$ のうち$-1 \leqq x \leqq 1$をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、$\overrightarrow{OQ}=2\overrightarrow{ OP}$ をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき$\overrightarrow{ OS }=\overrightarrow{ 2OP }+\overrightarrow{ OR }$をみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。

2018東京大学文過去問
この動画を見る 

大学入試問題#33 浜松医科大学(2020) 漸化式と級数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。

出典:2020年浜松医科大学 入試問題
この動画を見る 

福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
この動画を見る 

広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?

出典:広島大学 過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP